UNIVERSITE de HAUTE ALSACE - FACULTE DES SCIENCES et TECHNIQUES

Licence 1 -Licence 2. Mathématiques

ALGEBRE LINEAIRE

Cours Elisabeth Remm

EXERCICES - Chapitre 7

L'espace vectoriel et euclidien \mathbb{R}^n

Exercice 1

Les sous-ensembles suivants de \mathbb{R}^3 sont-ils des sous-espaces vectoriels?

- (1) $F_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + 2x_2 x_3^2 = 0\}.$
- (2) $F_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 x_2 = 0\}.$
- (3) $F_3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, \cos x_1 + 2e^{x_2} x_3^2 = 0\}.$
- (4) $F_4 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + 2x_2 x_3 = 1\}.$

Exercice 2

Soit $gl(n, \mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre n.

- (1) Rappeler sa structure d'espace vectoriel réel ainsi que sa dimension. En décrire une base.
- (2) Soit so(3) le sous-ensemble de $gl(3,\mathbb{R})$ formé des matrices vérifiant

$$M = -^t M$$
.

Montrer que c'est un espace vectoriel réel. Quelle est sa dimension?

- (3) Rappeler la notion de trace d'une matrice carrée. On considère le sous-ensemble de $gl(n,\mathbb{R})$ formé des matrices de trace nulle. Montrer que c'est un hyperplan vectoriel de $gl(n,\mathbb{R})$.
- (4) Soit $GL(n,\mathbb{R})$ le sous-ensemble de $gl(n,\mathbb{R})$ formé des matrices inversibles. Est-ce un sous- espace vectoriel?

Exercice 3

Dans un espace vectoriel E à quatre dimensions rapporté à une base $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\}$ on considère les vecteurs $\overrightarrow{X_1}, \overrightarrow{X_2}, \overrightarrow{X_3}$ de composantes

$$\overrightarrow{X_1} = (2, 1, 4, -3), \ \overrightarrow{X_2} = (1, -1, -1, -3), \ \overrightarrow{X_3} = (1, 2, 5, 0).$$

- (1) Montrer que ces vecteurs sont linéairement dépendants et donner une relation par laquelle ils sont liés.
- (2) En déduire la dimension du sous-espace vectoriel engendré par ces trois vecteurs et en donner une base.

(3) Compléter cette base pour obtenir une base de E

Exercice 4

Dans un espace vectoriel complexe à trois dimension rapporté à une base $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$, on donne les vecteurs

$$\overrightarrow{X_1} = \overrightarrow{e_2} + i\overrightarrow{e_3}, \ \overrightarrow{X_2} = \overrightarrow{e_3} + i\overrightarrow{e_1}, \ \overrightarrow{X_3} = \overrightarrow{e_1} + i\overrightarrow{e_2}.$$

Montrer que ces trois vecteurs forment une base et trouver dans cette base les composantes du vecteurs $\overrightarrow{Y} = \overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}$.

Exercice 5

On considère F le sous-ensemble de \mathbb{R}^4 défini par

$$F = \{(x, y, z, t) \in \mathbb{R}^4; \ x + y = 0, \ \text{et} \ x + z = 0\}$$

- (1) Donner une base de F.
- (2) On pose $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 2, 3, 4)$, $u_3 = (-1, 0, -1, 0)$. La famille (u_1, u_2, u_3) est-elle libre?
- (3) On pose G le sous-espace engendré par les vecteurs u_1, u_2, u_3 , i.e $G = Vect\{u_1, u_2, u_3\}$. Quelle sa dimension?
- (4) Donner une base de $F \cap G$.
- (5) En déduire que $F + G = \mathbb{R}^4$.
- (6) Est ce qu'un vecteur de \mathbb{R}^4 s'écrit de manière unique comme somme d'un élément de F et un élément de G?
- (7) Donner un supplémentaire de F. Est-il unique?

Exercice 6

On considère dans \mathbb{R}^4

$$v_1 = (1, 2, 0, 1)$$
 $v_2 = (1, 0, 2, 1)$, $v_3 = (2, 2, 2, 2)$, $w_1 = (1, 2, 1, 0)$ $w_2 = (-1, 1, 1, 1)$, $w_3 = (2, -1, 0, 1)$, $w_4 = (2, 2, 2, 2)$.

- (1) Montrer que la famille $\{v_1, v_2\}$ est libre et que $\{v_1, v_2, v_3\}$ est liée.
- (2) Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs $v_1, v_2, v_3, v_4, v_5, v_6$
 - (a) Déterminer une base de F.
 - (b) Déterminer un sous-espace supplémentaire de F.
- (3) Montrer que la famille $\{w_1, w_2, w_3\}$ est libre et que $\{w_1, w_2, w_3, w_4\}$ est liée.
- (4) Montrer que la famille $\{v_1, v_2, w_1, w_2\}$ est libre.
- (5) Soit G le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs w_1, w_2, w_3, w_4 . Déterminer une base de G.
- (6) Déterminer $F \cap G$. Les sous-espaces F et G sont-ils supplémentaires?

Exercice 7

Soit u l'application de \mathbb{R}^3 dans \mathbb{R}^4 , définie par

$$u(x, y, z) = (-x + y, x - y, -x + z, -y + z).$$

(1) Montrer que u est linéaire.

Elisabeth Remm 3

- (2) On note $\{e_1, e_2, e_3\}$ et $\{f_1, f_2, f_3, f_4\}$ les bases canoniques de \mathbb{R}^3 et \mathbb{R}^4 . Calculer $u(e_1)$, $u(e_2)$, $u(e_3)$ en fonction de $\{f_1, f_2, f_3, f_4\}$.
- (3) Écrire la matrice de u dans ces bases canoniques.
- (4) Montrer que $\{f_1, f_2, u(e_1), u(e_2)\}$ est une base de \mathbb{R}^4 .
- (5) Écrire la matrice de u dans les bases $\{e_1, e_2, e_3\}$ et $\{f_1, f_2, u(e_1), u(e_2)\}$.

Exercice 8

Soient $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 , $w_1 = (1, -2, 0)$, $w_2 = (-1, 2, 0)$, $w_3 = (0, 0, 2)$ et u l'endomorphisme de \mathbb{R}^3 , défini par la donnée des images de vecteurs de base :

$$u(e_1) = w_1, \ u(e_2) = w_2, \ u(e_3) = w_3.$$

- (1) a) Exprimer les vecteurs w_1, w_2, w_3 en fonction des vecteurs e_1, e_2, e_3 . En déduire la matrice de u dans la base canonique.
 - b) Soit $v = (x, y, z) \in \mathbb{R}^3$. Calculer u(v).
- (2) Trouver une base de $\operatorname{Ker} u$ et $\operatorname{Im} u$.
- (3) Montrer que $\mathbb{R}^3 = \operatorname{Ker} u \oplus \operatorname{Im} u$.

Exercice 9

Chacune des matrices suivantes représente une application linéaire de \mathbb{R}^p dans \mathbb{R}^n (p et n sont à préciser) donnée dans les bases canoniques associées. Déterminer le noyau et l'image pour chacun des cas (réfléchir avant de se lancer dans des calculs...) :

$$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \quad , \quad \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \quad , \quad \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

Exercice 10

On considère l'application f de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- (1) Calculer les images par f des vecteurs de la base canonique $\{e_1, e_2, e_3\}$ de \mathbb{R}^3 . En déduire une base de Im f.
- (2) Dérminer une base de Ker f.
- (3) f est-elle injective? surjective?

Exercice 11

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}$$

Donner une base de Ker f et Im f.

Exercice 12

Soit u l'application de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leur base canonique respective est

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \end{pmatrix}$$

On appelle $\{e_1,e_2,e_3\}$ et $\{f_1,f_2\}$ les bases canoniques de \mathbb{R}^3 et de \mathbb{R}^2 . On pose

$$e'_1 = e_2 + e_3, \ e'_2 = e_3 + e_1, \ e'_3 = e_1 + e_2, \quad \text{et} \quad f'_1 = \frac{1}{2}(f_1 + f_2), \ f'_2 = \frac{1}{2}(f_1 - f_2).$$

- (1) Montrer que $\{e'_1, e'_2, e'_3\}$ est une base de \mathbb{R}^3 et $\{f'_1, f'_2\}$ est une base de \mathbb{R}^2 .
- (2) Donner la matrice de u dans les nouvelles bases.

Exercice 13

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$M = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$$

Donner une base de Ker f et Im f. En déduire que $M^n = 0$ pour tout $n \ge 2$.

Exercice 14

Dans \mathbb{R}^n , les sous-espaces vectoriels F_1, F_2 et F_3 sont dits supplémentaires si tout vecteur de \mathbb{R}^n s'écrit de manière unique sous la forme

$$\overrightarrow{X} = \overrightarrow{X_1} + \overrightarrow{X_2} + \overrightarrow{X_3}$$

avec $\overrightarrow{X_1} \in F_1, \overrightarrow{X_2} \in F_2$ et $\overrightarrow{X_3} \in F_3$.

- (1) Soient F_1 le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_1} = (1,1,0)$, F_2 le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_2} = (1,0,1)$ et F_3 le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_3} = (0,2,0)$. Montrer que ces sous-espaces sont supplémentaires.
- (2) Soit F_4 le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_4}=(1,2,1), F_5$ le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_5}=(1,1,0)$ et F_6 le sous-espace de \mathbb{R}^3 engendré par le vecteur $\overrightarrow{v_3}=(0,1,1)$. Montrer que $F_i\cap F_j=\{0\}$ pour tout i,j=4,5,6. Ces sous-espaces sont-ils supplémentaires?

Exercice 15 On considère dans l'espace euclidien \mathbb{R}^4 les sous-espaces vectoriels

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 - x_3 + x_4 = 0\}$$

et

$$G = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : -x_1 + 2x_2 + 3x_3 - x_4 = 0\}$$

Déterminer une base de F^{\perp} et de G^{\perp} .

Exercice 16 On considère dans l'espace euclidien \mathbb{R}^4 le sous-espace vectoriel F défini par

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + x_4 = 0 \end{cases}$$

- (1) Quelle est la dimension de F?
- (2) Déterminer le système d'équations de F^{\perp}

Exercice 17 On considère dans \mathbb{R}^3 la famille

$$\mathcal{F} = \{ u = (1,0,1), \ v = (1,1,1), \ w = (-1,-1,0). \}.$$

Elisabeth Remm 5

- (1) Montrer que \mathcal{F} est une base de \mathbb{R}^3
- (2) Orthonormaliser, en suivant le procédé de Gram-Schmidt cette base.
- (3) Soit \mathcal{F}' la nouvelle base obtenue. Ecrire la matrice de changements de base de la base canonique à \mathcal{F}' . Vérifier que cette matrice est orthogonale.